Suggestions for Data Management within Ocean Timeseries Data
April 2003
Results of previous Meeting

- All data have to be allowed for public access.

- A concern was whether a centralized placed would always have the latest version of data.

- QC would be ok for delayed-mode data, since PI should only deliver data after careful check.

- Real-time QC for timeseries is more challenging. For salinity and CO2 and chlorophyll this will be difficult. Automatic procedures could/should just flag suspicious data.

- Start a testbed from Coriolis existing multidisciplinary data sets who will provide an example of format
Mooring data processing context

• Two types of moorings:

 • Moorings part of a network for which:
 • there is a data center taking care of data processing
 • both in real time and delayed mode data set are handled
 • computer specialist attached at the center to provide sustainable in time data processing, archiving and distribution facilities

 • Moorings handled by a laboratory
 • data processed by the scientific team for the duration of the project
 • not much of computer specialist available
 • No funding for sustainable service (processing, distribution, archive)
A network/mooring => a format

- **Aloha**: an file per parameter and depth: Temperature at 90m
 - RBR XX-105 2.7 006720
 - Host time 2000/10/23 14:47:46
 - Logger time 88/10/23 14:59:28
 - Logging start 88/06/24 00:00:00
 - Logging end 88/11/19 00:00:00
 - Sample period 00:30:00
 - Number of channels = 1, number of samples = 5838, mode : 2
 - Calibration data from file 006720.cal :
 - Drawing 1359-801, created 13sep90 for logger XX-105. #6720
 - D10%8.3f
 - 1 5 0.409376 3883.07 0.168165 -1.98301e-05 0 0 0 Degrees_C
 - 88/06/24 00:00:00

- **NTAS**: all parameters in one file. One line/set of measurements. No metadata.
 - %SYS#1 -- Daily Transmission Report Thu Apr 3 01:04:18 EST 2003 -- Argos data file #1718
 - %year month day yearday hour BP AT SST Uwnd Vwnd RH SW LW RN BV CO
 - 2003 4 1 91 21 1014 25.47 26.23 -6.50 -1.00 77 39 396 0 12.5 5.60
 - 2003 4 1 91 22 1015 25.43 26.24 -6.32 -1.57 76 4 403 0 12.5 5.60
 - 2003 4 1 91 23 1015 25.44 26.23 -6.76 -1.19 77 4 405 0 12.5 5.59
 - 2003 4 2 92 0 1016 25.45 26.22 -6.88 -1.12 77 4 401 0 12.5 5.59
A network/mooring => a format

- **Animate/Estoc:** No ftp site but subsetting tool to get ascii files: one file for all parameters.

 estoc_d_id,Date_Time,mn_bid,temp10,cond10,temp20,cond20,press20,temp50,cond50,temp100,cond100,press100,temp180,cond180,temp380,cond380,press380,temp650,cond650,temp920,cond920,press920,buoyt,buoyv,buoyb,add_dat,
 1015,2002-06-11
 06:52:52,707,0,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222
 1017,2002-06-11
 09:42:11,708,0,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222
 1019,2002-06-11
 13:18:06,709,2,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222
 1021,2002-06-11
 15:20:28,709,0,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222
 1023,2002-06-12
 02:12:08,711,0,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222,22.222

- **One sample of netcdf file. A few metadata attached to file**
A network/mooring => a format

• Tao/Pirata: Ascii one file per mooring and parameter on FTP. WWW interface to get a file per parameter (possible to get multi-moorings files) ascii or netcdf.

Few metadata QC flags.
 – Location: 2N 137E 1 Mar 2003 to 1 Apr 2003 (32 times, 12 depths, 1 blocks) Gen. Date Apr 3 2003
 – Units: Depth (Meters), Temperature (C), -9.999 = missing
 – Time: 1200 1 Mar 2003 to 1200 1 Apr 2003 (index 1 to 32, 32 lines, 12 depths)
 – Index: 1 2 3 4 5 6 7 8 9 10 11 12
 – Depth(M): 1.5 25 50 75 100 125 150 200 250 300 500 750 QUALITY INDICES
 – DATE TIME SST TEMP TEMP
A step by step approach
Study a distributed approach

1. Can be simple: Just a WWW portal and a set of links to all the datasets
 ⇒ Can be put in place within 2 months

2. A bit more integrated for users
 • Data processing stay at the level of National center or Laboratory (including quality control process)
 • Centralized metadata catalog
 • Centralized WWW portal providing simple subsetting and printing tools
 • Data distributed among the network (national centers/PI laboratories)

4. Can be more complicated if we want to provide interactive interfaces on the WWW with fancy manipulation and subsetting tools.
A step by step approach
Ease access to OTS data: an intermediate solution for 2003

⇒ An intermediate solution between options 1&2 of previous slide for 2003

- Set up a common generic format able to serve the core variable defined for OTS project
- Rely on a few global data centers to provide an easy centralized access to data by mirroring the national/laboratory servers
- Delayed mode data + some realtime data

⇒ Define a common format in the 6 next months (Format working group to be created)
⇒ Who will be the volunteers Global centers?
⇒ Set up these global servers with volunteers data providers
• Rely on common standards already used for in-situ data:
 – Netcdf (Argo, Woce) + an version in ASCII
 – Contains metadata and data
 – Must be generic to be able to handle new parameters
 – For each parameter Data + QC flags
To start the format discussion

- For each data set:
 - unique address for each platform: does it exist?
 - Organization
 - project
 - contact person: person in charge of the mooring
 - data centre: centre which processed the data
 - date of last update of the data set
 - position
 - list of available parameters GF3/IOC code?
 - technical parameters
 - QC
To start the format discussion

- **For each parameter:**
 - sampling method description
 - data processing level
 - list of instruments and sensors
 - calibration equation
 - parameter unit
 - technical parameters

- **For each measurement:**
 - date and time (UTC)
 - date QC flag
 - measured parameter